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Abstract

A vertex coloring of a graph G is called acyclic if no two adjacent
vertices have the same color and no cycle in G is bichromatic. The acyclic
chromatic number a(G) of a graph G is the least number of colors in
an acyclic coloring of G. In this paper, we obtain bound for the acyclic
chromatic number of the strong product of a tree and a graph. An exact
value for the acyclic chromatic number of the strong product of two trees is
derived. Further observations are made on the upper bound for the strong
product of three paths.
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ber.
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1 Introduction

A proper coloring of the vertices of a graph G is an assignment of colors to the
vertices so that no two adjacent vertices have the same color. A proper coloring
is said to be acyclic if the coloring does not induce any bichromatic cycles. The
acyclic chromatic number of G, denoted by a(G), is the minimum number of
colors required for its acyclic coloring. The concept of acyclic coloring, acyclic
chromatic number, and star coloring was introduced by Grünbaum [5] in 1973 and
mainly studied by Albertson et al. [1], Borodin [3], and amongst others. Acyclic
colorings are hereditary in the sense that the restriction of an acyclic coloring to
a subgraph is an acyclic coloring. It was also proved by Kostochka [9], that for
every k ≥ 3, the problem of deciding whether a graph is acyclically k-colorable is
NP -complete for an arbitrary graph. There exist numerous types of operations
on graphs, like graph union, graph intersection, graph join, graph sum, graph
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product, etc., which are generally named as binary operations on graphs. While
there are some other types of operations, called unary operations on graph. Some
examples for unary operations on a graph are the complement of a graph, power
of a graph, line graph of a graph, middle graph of a graph, total graph of a
graph, splitting graph of a graph, central graph of a graph, etc. Other operations
of this kind can be found in Harary and Wilcox [6]. The product of graphs and
their coloring are an interesting area of work for many researchers, due to its vast
applications in different fields of science. A product G∗H of two graphs means a
graph with vertex set V (G)×V (H), and the edge set is determined by a function
on the edges of the factors. Even though many such products are defined, the
most important ones are the strong product, the cartesian product, the tensor
product, and the lexicographic product. These products are respectively denoted
by G �H, G�H, G ×H and G[H]. Klavzar [8], Greenwell and Lovasz [4] have
made studies on some interesting applications of product colorings in their papers.

The strong product of graph was first introduced by the Austrian Mathemati-
cian Sabidussi [11] in 1960. The strong product G1 � G2 of two graphs G1 and
G2 is a graph having vertex set V (G1)×V (G2) and edge set E(G1�G2) given by
the pairs (u, v), where u = (u1, u2) and v = (v1, v2) are adjacent in G = G1 �G2

whenever [u1 = v1 and u2 adj v2] or [u2 = v2 and u1 adj v1] or [u1 adj v1 and
u2 adj v2]. Note that, the strong product of graphs is commutative for unlabeled
graphs and also associative. Hence, the graph product G1 � G2 � · · · � Gn is
explicitly defined for any n. One of the known application of the strong product
of graphs is in the information theory, where the zero-error capacity of a noisy
channel is defined in terms of independence numbers of the strong products of
the graph related to the channel ( [10], [12]). The chromatic number of the strong
product of cycles and its several consequences has been studied by Zerovnik [13].
Acyclic colorings of cartesian products of trees have been studied by Jamison et
al. [7]. But no work related to the acyclic coloring of strong products of trees has
been formulated yet. Determining the exact values of acyclic chromatic number
for the strong product of different families of a graph is a hard problem. Even for
the simple and highly structured graph classes, the value is still not determined
exactly.

In this paper, we obtain bound for the acyclic chromatic number of the strong
product of a tree and a graph. The exact value obtained for the acyclic chromatic
number of strong product of paths, lead to the acyclic chromatic number of strong
product of two trees. Observations are made on the upper bound for the strong
product of three paths; its generalization is a scope of future work. In the strong
product of paths and trees, the most of the subgraphs are of the form kings
graphs, that is, a graph whose vertices are squares of a chess board and whose
edges represent possible moves of a chess king. The strong product of two trees
resembles like a tree, where each edge is a king’s graph. While discussing the
proofs of theorems, we have to deal with various king’s graph at different branches
of such trees. Throughout this paper graphs means simple connected graphs. In
figures the symbol i represents the color ci. Pm denotes the path on m vertices
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and Cn denotes the cycle on n vertices. Diameter of a graph G is defined by
diam(G) = max{d(x, y) : x, y ∈ V (G)}, where d(x, y) is the distance between x
and y and ∆(G) denotes the maximum degree of the graph G. The removal of
a vertex vi from a graph G results in that subgraph G − vi of G consisting of
all vertices of G except vi and all edges incident with vi. G − vi is the maximal
subgraph of G not containing vi.

2 Acyclic chromatic number of strong product

of two paths

In this section an exact value for the acyclic chromatic number of P3 �Pn, n ≥ 2
and Pm � Pn,m,n ≥ 4 are computed.

Proposition 2.1. [2] Let G = Pm � Pn. Then
(i) a(G) = 2, for m = 1 and n ≥ 2.
(ii) a(G) = 4, for m = 2 and n ≥ 2.

Proposition 2.2. [14] Let G = G1 � G2, and ∆i is the maximum degree of Gi

for i = 1, 2. Then,
(i) the maximum degree, ∆(G) = (∆1 + 1)(∆2 + 1)− 1.
(ii) the number of edges, ε(G) = 2ε(G1)ε(G2) + ε(G1)υ(G2) + ε(G2)υ(G1).

Theorem 2.1. For n ≥ 2, the acyclic chromatic number a(P3 � Pn) = 4.

Proof. Let G = P3 � Pn and V (G) = {v1, v2, v3, · · · , vn, un, un−1, · · · , u1, w1,
w2, · · · , wn} be the vertex set of G which are marked in the same order as they
appear in V (G). Consider the set C = {c1, c2, c3, c4}, where c1, c2, c3, c4 are dis-
tinct colors. Assign the color ci to the vertices of G as follows.
For odd values of i, the color c1 is assigned to vi and wi+1 and c3 to ui. For even
values of i, the color c2 is assigned to vi and wi−1 and c4 to ui.
Now we prove that the coloring is acyclic. That is the coloring does not induce a
bichromatic cycle. The coloring is in such a way that the subgraphs induced by
each pair of colors are listed below.

Sl. Subgraph Odd n Even n Value of
No. Induced by ω ν ε ν ε ν − ε

1 < c1, c3 > 1 3dn
2
e − 1 3dn

2
e − 2 3n

2
3n
2
− 1 1

2 < c1, c4 > 1 3dn
2
e − 2 3dn

2
e − 3 3n

2
3n
2
− 1 1

3 < c2, c3 > 1 3dn
2
e − 1 3dn

2
e − 2 3n

2
3n
2
− 1 1

4 < c2, c4 > 1 3dn
2
e − 2 3dn

2
e − 3 3n

2
3n
2
− 1 1

Here in each case the result ε = ν − ω, (ω is the number of components, ν
the number of vertices and ε is the number of edges) is verified, which is the
necessary and sufficient condition for a forest. Also the subgraphs induced by
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< c1, c2 > is the union of 2 paths Pn and the subgraph induced by < c3, c4 >
is the path Pn. Thus any pair of the colors in the set C will never induce a
bichromatic cycle in the graph G. So the above said coloring is acyclic. Also the
coloring is minimum, since G contains the subgraph K4.
Hence a(P3 � Pn) = 4 for n ≥ 2.

Illustrate the above theorem with an example

Figure 1: Acyclic Coloring of P3 � P6

Lemma 2.2. The acyclic chromatic number a(P4 � P4) = 5.

Proof. Let G = P4�P4. This graph resembles a square, as depicted in Figure 2.
We consider three cases according to the degree of the vertices in G. Let vi ∈ G
Case 1. If deg(vi) = 3, then these vertices are labeled with colors c1, c2, c3, c4 in
anti-clock wise direction (from left bottom corner vertex).
Case 2. If deg(vi) = 5, then these vertices are labeled with colors c4, c5, c1, c5, c2,
c5, c3, c5 in anti-clock wise direction (from left bottom).
Case 3. If deg(vi) = 8, then these vertices are assigned with colors c4, c1, c2, c3
such that the coloring is proper.

Next we prove that this coloring does not induce a bichromatic cycle. Con-
sider the vertices which are adjacent to the vertices of degree 3 in G. Since these
vertices are colored with distinct colors, it is not possible to form a bichromatic
cycle through the degree 3 vertices in G. Remove these 4 vertices from G to
form a subgraph G′. In G′, the subgraph induced by ≺ ci, c5 �, i ≤ 4 always
constitute disjoint union of 2 paths P3 and hence they never form a bichromatic
cycle through c5. A new subgraph G′′ is formed from G′ by removing the vertices
which are colored by the color c5. This process is explained in the Figure 2. Also
in G

′′
, the adjacent vertices of the remaining four vertices with degree 5 in G,

which are mentioned in case 2 are colored with distinct colors. Therefore, we
cannot find a bichromatic cycle passing through these vertices. Finally in G

′′
,

the subgraph induced by the vertices of degree 8 in G, which are mentioned in
case 3 form a complete graph K4. Hence the coloring is acyclic. Next to prove
that the coloring described above is minimum. Assume that a(P4 � P4) = 4. By
Theorem 2.1, a(P3 � P4) = 4. The acyclic 4-coloring of P3 � P4 is unique, up
to permutation of colors and any 4-coloring of our required graph P4 � P4 leaves
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only two colors on the top row which are also used in the second row. There are
only two ways to color this top row, each of which will produce a bichromatic
cycle. Thus a(P4 � P4) ≥ 5. Hence the lemma follows.

The color pattern described above can be exhibited in the form of a square

matrix of order 4, P4,4 =


4 5 2 3
3 1 4 5
5 2 3 1
1 4 5 2

, we call it as a generating matrix.

Figure 2: An acyclic coloring of G = P4 � P4, the color ci is marked as i

Theorem 2.3. For m,n ≥ 4, the acyclic chromatic number a(Pm � Pn) = 5.

Proof. Let G = Pm � Pn. Then by Lemma 2.2, we have a(P4 � P4) = 5. By
using the generating matrix,

P4,4 =


4 5 2 3
3 1 4 5
5 2 3 1
1 4 5 2

 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (2.1)

we can construct a matrix Pm,n = [pij]m×n which represents the acyclic coloring
of G. Define

pi,j =


a(i mod 5),(j mod 5) when both i 6≡ 0 mod 5 and j 6≡ 0 mod 5,
5 when both i ≡ 0 mod 5 and j ≡ 0 mod 5,
a(−j mod 5),(−j mod 5) when both i ≡ 0 mod 5 and j 6≡ 0 mod 5,
a(−i mod 5),5−(−i mod 5) when both j ≡ 0 mod 5 and i 6≡ 0 mod 5,

(2.2)
where, the positive x mod k is taken, while considering the congruences. Here
the minimality is obvious from Lemma 2.2. Now the coloring described in the
matrix Pm,n for m,n ≥ 4 will never constitute a bichromatic cycle for any pair
of colors, which can be explained as follows. By definition 2.2, in the matrix
Pm,n we can find full or partial blocks of the generating matrix P4,4 separated by
the rows Ri and the columns Cj, where i, j ≡ 0 mod 5. In the matrix P4,4, it
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can be noticed that the subgraphs induced by the opposite corner pair of colors
namely ≺ 1, 3 � and ≺ 2, 4 � are union of a path P4 and two points; while the
subgraphs induced by all other pair of colors are union of two non-intersecting
paths P4 and P3. Thus in Pm,n the subgraphs induced by any two colors are either
non-intersecting paths or union of non-intersecting paths and points. Therefore
the coloring is acyclic. Hence a(Pm � Pn) = 5, m,n ≥ 4.
The matrix P11,12 with different blocks and the subgraph induced by one pair
≺ 2, 3 � is illustrated in Figure 3.

Figure 3: The matrix P11,12 and the subgraph ≺ 2, 3 �

3 Acyclic chromatic number of strong product

of trees

In this section, we determine exact value for the acyclic chromatic number of
strong product of two trees, and bound for the strong product of a graph and a
tree.

Lemma 3.1. Let G = T1 � T2, where Ti is a tree and diam(Ti) ≥ 3 for i = 1, 2.
Then a(G) = 5.

Proof. Case 1. Assume that T1 and T2 are paths and diam(Ti) ≥ 3. Then by
Theorem 2.3 a(G) = 5.
Case 2. Suppose that T1 and T2 are trees with branches and sub-branches and
diameters of T1 and T2 be m and n respectively. Then the largest paths in
T1 and T2 will be Pm+1 and Pn+1 respectively. Let c, v1, v2, v3, · · · , vm−1, d and
a, u1, u2, u3, · · · , un−1, b be vertices of the largest path in T1 and T2 respectively,
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where a, b, c and d are pendant vertices.
In the case of T1, vr and vm−r represent vertices which are at a distance of r units
from c and d respectively. Also vr,s represents vertex of the subbranch which are
at a distance of s unts from vr. The maximum possible length of any branch at the
internal vertices vr and vm−r will be of at most r, where r ∈ {1, 2, 3, · · · , bm

2
c}.

Also in each branch at the vertex vr, the maximum length of the sub-branch
at vr,s and vm−r,s will be of length at most r − s, for r = 1, 2, 3, · · · , bm

2
c and

s ≤ r. Similarly for the tree T2 the maximum possible length of any branch at
the internal vertices ui and un−i will be of at most i, where i ∈ {1, 2, 3, · · · , bn

2
c}.

Also, in each branch at the vertex ui, the maximum length of the sub-branch
at ui,j and un−i,j will be of length at most i − j, for i = 1, 2, 3, · · · , bn

2
c and

j ≤ i. This can be extended to any number of sub-branches of T1 and T2. By
Theorem 2.3, a(Pm+1 � Pn+1) = 5 and Pm+1 � Pn+1 is a subgraph of G, which
gives a(G) ≥ 5.
By equation (2.2) of Theorem 2.3, we construct a matrix Pm+1,n+1 that represents
the acyclic coloring of G.

Pm+1,n+1 =



4 5 2 3 1 4 5 · · · p1,n+1

3 1 4 5 2 3 1 · · · p2,n+1

5 2 3 1 4 5 2 · · · p3,n+1

1 4 5 2 3 1 4 · · · p4,n+1

2 3 1 4 5 2 3 · · · p6,n+1

4 5 2 3 1 4 5 · · · p7,n+1

3 1 4 5 2 3 1 · · · p8,n+1

...
...

...
...

...
...

... · · ·
...

pm+1,1 pm+1,2 pm+1,3 pm+1,4 pm+1,5 pm+1,6 pm+1,7 · · · pm+1,n+1


Subcase 1. Assume that the tree T1 is a path and T2 is a tree with branches
and sub-branches. Consider the arbitrary branch at the internal vertex ux of the
tree T2 having maximum length x, for x = 1, 2, 3, · · · , dn

2
e. Then we get a king’s

subgraph Pm+1 � Px+1 of Pm+1 � Pn+1 at the (x + 1)th branch of the original
graph Pm+1 � Pn+1. For 1 ≤ j ≤ x + 1, the vertices of this subgraph which
lies in the jth vertical columns are assigned by the (j + x)th column colors of
the matrix Pm+1,n+1, such that the coloring of the subgraph coincide with the
coloring of Pm+1 � Pn+1. As the acyclic coloring is hereditary, we can conclude
that a(G) = 5.

Subcase 2. In the case of both T1 and T2 having branches and sub-branches,
by the same argument of Subcase 1, we have corresponding to every branch at
the internal vertex vy of T1, we get king’s subgraph Py+1 � Pn+1 of Pm+1 � Pn+1.
This is true for any branch or sub-branch of T1 or T2. Moreover, since a tree is
an acyclic graph and the coloring assigned to the vertices of king’s subgraph are
submatrices of the matrix Pm+1,n+1, the coloring will never induce bichromatic
cycles in G. Thus we can color G with 5 colors acyclically.
Hence in all cases a(G) = 5.
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Remark 3.1. Let G = Pm � T , where T is a tree with diam(T ) ≥ 1. Then
a(G) = 4, m ∈ {2, 3}.

Proposition 3.1. Let G = G1 � G2 where G1 and G2 are two complete graphs
with maximum degree ∆i for i = 1, 2. Then a(G) = ∆(G) + 1.

Proof. Let m,n ≥ 1 be the number of vertices of G1 and G2 respectively. Then
the graph G will have mn vertices and ∆1 = m−1 and ∆2 = n−1. By Proposition
2.2(i), we have ∆(G) = (m− 1 + 1)(n− 1 + 1)− 1 = mn− 1. Thus we get G is
complete, and a(G) = mn = ∆(G) + 1.

Corollary 3.2. Let G = G1 �G2 � · · ·�Gn, where Gi are complete graphs with
maximum degree ∆i for i = 1, 2, · · · , n. Then a(G) = Πn

i=1(∆i + 1).

Proof. By Propositions 2.2(i) and 3.1, we have a(G1 � G2) = (∆1 + 1)(∆2 +
1). Since the strong product of two complete graphs are complete, G will be
a complete graph. Hence by extending the above result we can conclude that
a(G) = Πn

i=1(∆i + 1).

Theorem 3.3. Let G = Kn � T , where T is a tree with diam(T ) ≥ 1. Then
a(G) = 2n.

Proof. In Kn � P2 there are 2 copies of Kn, say K
(1)
n and K

(2)
n and we can find

an edge from each vertex of K
(1)
n to all other vertices of K

(2)
n or vice versa. By

Proposition 2.2(i), ∆(Kn � P2) = (n − 1 + 1)(1 + 1) − 1 = 2n − 1. Thus by
Proposition 3.1 a(Kn � P2) = 2n.

Let c be an acyclic coloring ofKn�P2 using the color set C = {1, 2, 3, · · · , 2n}.
Let us take C = C1 ∪C2 = {1, 2, 3, · · · , n}∪ {n+ 1, n+ 2, n+ 3, · · · , 2n} and the

colors of the sets C1 and C2 are assigned to K
(1)
n and K

(2)
n respectively. Here the

subgraph induced by ≺ i, j � is a path P2, for all 1 ≤ i, j ≤ 2n. The coloring is
represented in Figure 4.

Figure 4: Representation of Kn � P2 and its coloring

The acyclic coloring c can be extended to the product Kn � Pn such that
the adjacent Kn’s are assigned with different color set as explained in Figure 5.
Here the subgraph induced by ≺ i, j � is the union of paths P2, if both i and
j belong to the same color set C1 or C2, otherwise it will be a path Pn. Thus
a(Kn � Pn) = 2n.

We can extend the coloring c to Kn � T by preserving its acyclicity. Because
the tree T is a connected acyclic graph, so in any proper coloring of Kn�T using c,

8
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Figure 5: Representation of Kn � Pn and its coloring

no adjacent Kn’s will be assigned with same color set C1 or C2. Thus the subgraph
induced by any two colors will be always a forest. Hence a(Kn � T ) = 2n.
A tree T and an acyclic coloring of Kn � T is explained in Figure 6.

Figure 6: A tree T and a representation of an acyclic coloring of Kn � T

From Proposition 3.1 and Theorem 3.3, the Remark 3.2 is obtained.

Remark 3.2. Let G = Kn�H, where the graph H is non-empty and diam(H) ≥
1. Then 2n ≤ a(G) ≤ ∆(G) + 1.

Theorem 3.4. Let G = H � T , where H is a non-empty graph other than a tree
having n vertices and T be a tree other than path. If ∆1 and ∆2 are respectively
the maximum degrees of H and T with ∆1 ≥ dn2 e, then a(G) ≤ ∆(G)− 3.

Proof. By Theorem 3.3, we have a(G) ≤ 2n. Since T is a tree other than a path,
∆2 ≥ 3. Now by Proposition 2.2(i), we have ∆(G) ≥ (dn

2
e + 1)(3 + 1) − 1. If n

is even, we get ∆(G) ≥ (n
2

+ 1)(4)− 1 = 2n+ 3. That is ∆(G)− 3 ≥ 2n.

9
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If n is odd, we get ∆(G) ≥ (n+1
2

+ 1)(4) − 1 = 2n + 5. That is ∆(G) − 3 ≥
2n+ 2 > 2n.
Thus we get a(G) ≤ ∆(G)− 3.

The determination of the exact value for the acyclic chromatic number of
strong product of three or more graphs is a tedious job. However, we compute
the exact value of a(Pm � P2 � P2) in the following Theorem.

Theorem 3.5. The acyclic chromatic number, a(Pm � P2 � P2) = 8, for m ≥ 2.

Proof. The proof is by induction on m. For m = 2, the graph G = P2 �P2 �P2

is isomorphic to the complete graph K8. Thus a(G) = 8. Now before moving to
the next step of induction, for m = 2, define an acyclic coloring c of G by using
the colors c1, c2, · · · , c8 as follows.
Let vi ∈ V (G), 1 ≤ i ≤ 8 and V = {v1, v2, · · · , v8} be the vertex set of G which
are marked in anti-clockwise direction in the same order as they appear in V .
Then the coloring given by the function c(vi) = ci, 1 ≤ i ≤ 8 gives an acyclic
coloring of G. Next assume that the result is true for m = k. That is, an acyclic
coloring of G = Pk � P2 � P2 is a map c : V (G)→ {c1, · · · , c8} such that

c(v4r+i) =

{
ci r = 0, 2, 4 · · ·
c4+i r = 1, 3, 5, · · · 1 ≤ i ≤ 4 (3.1)

for r = 0, 1, 2, 3, 4, · · · , k − 1.
It can be noted that in this coloring the subgraphs induced by

≺ ci, cj �=


⌈
k
2

⌉
copies of P2 for i, j = 1, 2, 3, 4,⌊

k
2

⌋
copies of P2 for i, j = 5, 6, 7, 8,

Pk for i = 1, 2, 3, 4 and j = 5, 6, 7, 8,

forms a forest.

Next to prove the result holds for m = k + 1. According to equation (3.1), we
can extend the coloring to G = Pk+1 � P2 � P2, with r = 0, 1, 2, 3, 4, · · · , k. It
gives the induced subgraphs

≺ ci, cj �=


⌈
k+1
2

⌉
copies of P2 for i, j = 1, 2, 3, 4,⌊

k+1
2

⌋
copies of P2 for i, j = 5, 6, 7, 8,

Pk+1 for i = 1, 2, 3, 4 and j = 5, 6, 7, 8,

which again forms a forest. Thus the result is true for m = k + 1.
Hence by method of mathematical induction, a(Pm � P2 � P2) = 8,m ≥ 2.
An acyclic coloring of P2 � P2 � P2 is illustrated in Figure 7.

Observation 3.1. (i) The acyclic chromatic number, a(Pm � P2 � P3) = 10, for
m ≥ 3. (ii) The acyclic chromatic number, a(Pm � P2 � Pn) ≤ 2(n + 2), for
m,n ≥ 3.
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Figure 7: An acyclic coloring of P2 � P2 � P2

4 Conclusion

In this paper, the acyclic chromatic number of the strong product of paths, trees,
and graphs are studied. The exact value of the strong product of paths and trees
are derived. In other cases, bounds are obtained. Some observations are made
on the upper bound for the strong product of three paths.
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